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Dynamic correlation functions for finite and infinite smectic-A systems: Theory and experiment
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In this paper, we present the dynamic layer displacement—layer displacement and the dynamic density-
density correlation functions—both for smecficsystems in the thermodynamic limit, and for real sme#étic-
films that have finite size, nonzero surface tension acting at the two free surfaces, and nonzero layer sliding
viscosity. We also present the results of our soft-x-ray photon correlation spectroscopy experiment, which we
have used to directly measure the dynamic density-density correlation function for two different liquid crystals
(40.8 and 70.yin the overdamped surface tension restoring force limit of our theory. We used linearized
hydrodynamics to first calculate the behavior of smeagtisystems in the thermodynamic limit, and then to
calculate the behavior for real, finite size, nonzero surface tension freely suspended liquid crystal films. For
the real films, we used the linearized sme&ibydrodynamic equations and the Gaussian model for the layer
fluctuations to compute the set of relaxation times for the displacement field in a finite siditticbounded
by two free surfaces. We find that all of the relaxation times have maxima at nonzero values of the transverse
wave vectorq, . For thicker films the maxima shift towaradg =0 and grow linearly with the number of
smectic layerdN+ 1. For finiteN all of the relaxation times tend to zero @s— 0, except one that attains the
finite value 79 (0)= (N + 1) z3d/2y, wherezs, is the layer sliding viscosityd is the smectic period, angis
the surface tension. We find that the time-dependent scattering intensity integrateql, ovas the simple
scaling formS(q, ,t)~ (ao/A)Y®, wherea, andA are the molecular size cutoff and the instrument resolution
cutoff, respectively, and the time-dependent exporyeén)t:(kBTq§/4wy)[1—exp(—t/r(o)(O))]. Our results
clearly show that the boundary conditions strongly affect the hydrodynamics of real smectics.
[S1063-651%98)10408-1

PACS numbg(s): 61.30.Cz, 83.70.Jr

I. INTRODUCTION systems. Surprisingly, the effects of the Landau-Peierls fluc-
tuations, which destroy the long-range order in the thermo-
The six three-dimensional fluid smectic liquid crystals— dynamic limit, also produce substantial effects in extremely
namely, the two untilted smectis-and hexatid phases, thin liquid crystal films[3-5|, but the crossover to the ther-
and the four tilted smecti€, smectick, smectick, and modynamic limit is extremely slow. This extraordinary
smectick. phases—are the only systems that we have whicliarge-length-scale crossover also occurs in two-dimensional
are precisely at their lower marginal dimensionality in threemelting. For example, it was originally suggesféd that the
dimensions, i.e., for these systerd8=3. Consequently, required system size to observe Kosterlitz-Thouless-
there has been some beautiful, seminal theorefithand  Halperin-Nelson-Young melting in helium was about'10
experimental 2] work on the nonuniversal algebraic decay X 10*2 lattice constants, or about 500 m by 500 m, and that
of the static density-density correlation functions in thethe associated time scales would be extremely slow. Shortly
smecticA phase. This algebraic decay of the static correlaafterwards, it was showfi7] that the required system size
tion functions is produced by the divergent thermal fluctuawas “only” about 1Fx 10° lattice constants, or about 0.5
tions that occur in a system that is precisely at its lowermm by 0.5 mm. Of course, all of the definitive experiments
marginal dimensionality. These six smectic phases at theiwere done with effective system sizes less than aboéit 10
lower marginal dimensionality can each be thought of as an< 10° lattice constants, or about 2000 A by 2000 A. One of
extended line of critical points. On the other hand, what ardhe most important lessons of this era was that finite-size
the dynamic correlation functions, and how can we measureystems could be used to measure, and to calculate, the pre-
them, in a system that is precisely at its lower marginal di-cursor behavior long before the thermodynamic limit.
mensionality? Although the bulk smectié: phase is always technically
There has also been some recent wi@&k5] bridging the  at lower marginal dimensionality, the layer compression
gap between the algebraic singularities in the static correlaglastic constanB grows rapidly away from the nematic-to-
tion functions—which only occur in the thermodynamic smecticA transition[8], and consequently over much of the
limit—and the actual nondivergent behavior that occurs inphase we must go to extremely large system sizes before the
real, finite-size, nonzero surface tension, nonzero viscosityoot-mean-square layer fluctuation amplituda?)? be-
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comes comparable to the layer spacidg The three- The four hydrodynamical variables in smecfcliquid
dimensional liquid crystal versidfB,5] (i.e., the theory for a crystals are the density, the velocity fieldv, and the layer
finite-size smectidA system embedded in three-dimensionaldisplacement fieldu, which is associated with the broken
spacg of the two-dimensional melting calculation predicts translational symmetry. One goal of this paper is to provide a
that detailed analysis of the dynamic displacement-displacement
correlation function, including its relaxation time, both in the
112 thermodynamic limit for bulk smectié systems, and in
~(2.5 A)in(L/ay), finite-size smecticA films with surface tension.
Freely suspended smectic liquid crystal films are nearly
(1)  perfect model systems for the study of the influence of the
boundary conditions on the different static properties of the

whereK is the layer bend elastic constabtis the linear size  SmMectic phases. For example, the smectic layer fluctuations
of the sample, and, is a molecular size beyond which the Nave been studied both by x-ray scatterfrgd,10 and by
elastic theory breaks down. The above 2.5 A is obtained fol@ser light scatteringl1,12. There have also been studies of
keT=4X 10" erg and for typical smectié parameters: the meniscus and the dislocatiofk3], and studies of the

B=2.5x 107 dyn/cn? and K=10"°® dyn. We also assume surface-induced phase transitioh$4—16. These studies
that the molecular cutofi,=5 A and the layer spacing have shown that both the nonzero surface tension and the

=30 A. This equation predicts that the size of the Systen{inite size strongly influence the behavior of these systems.

must be about the same as the size of the earth before the rhS" €xample, when the surface tension is large, it quenches
layer fluctuation amplitude is equal to about one-half of theth® Smectic layer fluctuations, and this quenching produces

layer spacing, and that it must be about 20°2 m, whichis " enhanced x-ray specular reflectivity—this clearly demon-
about 2 1657 light years—or about X 1077 times larger  Strates that the static displacement-displacement correlation

than the estimated current diameter of the universe, which i&nctions are strongly influenced by the surface tensions act-
about 16 light years—before the rms layer fluctuation am- N9 &t the two free surfacgs,4,5,1Q. In this paper, we will

plitude is equal to the layer spacing. The main point here, 0{discuss the influence of finite system size, surface tension,

course, is that the logarithmic divergence is extremely slow2nd viscosity on the dynamic correlation functions  of

; ; ; ; ; ticA films
It is clearly impossible to do experiments on systems this€¢ ; _ _ .
large—or to turn off the surface tension, or to turn off the The full hydrodynamic behavior of the smectic systems

viscosity. Consequently, it is important to understand Whaﬁrat we arg_inte_rested in is very complicateq since th_elre are
happens in real, finite-size samples with both surface tensiofV® viscosities involved17]. Four of these diverge as
and viscosity included. in the low-frequency limitf18]. These divergences are the

Although there has been beautiful theoretical and experidiféct consequence of the anharmonic terms in the elastic
mental work on the static correlation functions, there hagnergy of the smectié- phase, which are required by the

been very little work on the dynamic correlation functions, "otational invariance of the free energ}]. However, for-
Our goal in this paper is to answer three of the obvioudunately, there are a few limits where the hydrodynamics are

fundamental questions about the dynamic critical behavior oireezslj)gr?c@y @?iinSp(;ekHi?eaiigqFl)cl)?]grev%g\r/lglgr?gtﬂf(af%r i’i%)low'

the smecticA phase, namelyi) What is the dynamic layer " >4“" v ;
displacement—layer displacement correlation function, andiPrations of freely suspended smectidiims. Experimental

what is the corresponding density-density correlation funcStudies(20,21 of the eigenfrequencies of vibrating films in

tion, for the smecticA phase in the thermodynamic limigp) ~ thiS regime show that the equation of motion is just the
What happens in real samples, i.e., what are the effects GimPIe wave equation

finite-system size, nonzero surface tension, and nonzero vis-
cosity on the dynamic displacement-displacement and the
dynamic density-density correlation function@?) How can

we probe the dynamic density-density correlation function in
the smecticA phase experimentally? We will answer theseHere,u is the vertical displacement of the film from its equi-
three questions, one at a time, in the next three sectionfibrium position,pq is the density of thé&\-layer film, and the
Surprisingly, we find that the effects of finite-system size andsurface tensiory acts at the two free surfaces.

of nonzero surface tension on the dynamics of the Landau- In their derivations of this simple wave equation, these
Peierls fluctuations are much larger than their effects on thauthors[20,21] assumed that only the density changes—i.e.,
statics. On the experimental side, this is still a work inthey assumed that both the permeation and the heat transfer
progress. We have measured the thermally driven fluctuasan be neglected, and they also assumed that the internal
tions for two different liquid crystals in the overdamped structure of the film remained unchanged. The neglect of the
limit, where the restoring force is due to the surface tensiorchanges in the internal structure is justified for long-

v, and the damping is due to the layer sliding viscosjty. wavelength, low-frequency vibrations because the curvature
However, our results indicate that we will also be able to useenergy associated witk, and the layer compression energy
our technique—which is soft-x-ray photon correlation associated wittB, are both very small compared to the en-
spectroscopy—to measure the thermally driven fluctuationergy associated with the surface tension term. Using the typi-
where the layer compression elastic consand the layer cal valuesd=30 A, K=10"° dyn, and\ =0.1 cm, we find
bend elastic constamt provide the restoring forces, and the

layer sliding viscosityp; provides the damping. Kdg?/ y~10 4 3)

k
(u?)V2= {LTB In(L/ag)
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where q=2m/\ is the modulus of the wave vector. The pe(r,t)=constr | W (r,t)|explige[z+u(r,t)]}+c.c. (6)
compression of the film can be neglected, because the elastic
constant associated with compression is so ldtggically  Here, ¥ (r,t) represents the local amplitude of the density
B~10" dyn/cnf) thatB/d>2yq?. This means that the lay- wave, u(r,t) represents the local displacement field of the
ers vibrate without appreciably changing their thicknessetayers, q,=27/d represents the wave number associated
[22]. Finally, we can also neglect the viscosity term in thewith the layer spacing, the layers are perpendicular to the
equation of motion, for reasons that will be discussed in thexis, and c.c. denotes the complex conjugate of the second
next two sections. term. We note in passing that an electron density almost
However, when the wavelength of the vibrations getsindistinguishable from the simple form given by E®) is
smaller, and/or the thickness of the film gets larger, then thebtained if we convolve the molecular center-of-mass prob-
internal structurewill play a non-negligible role. We can ability distribution with the electron density of a single

estimate[22] that this will start to happen when liquid-crystal molecule. The molecular center-of-mass distri-
bution can be well approximated by the sum of Gaussian
27qde distributions, in which theth Gaussian distribution is cen-
T~O.1. 4 tered at the equilibrium position of thiéh smectic layer; ,

and depends only on the distance from that ldygerz| [4].
Using our set of typical parameters above, we find that thidway from the nematic-to-smectis-phase transition, we

crossover starts when can neglect the fluctuations in the amplitude and concentrate
on the layer displacement fluctuations. If we consider the
2.7x10° YN~\. (measured in A. (5)  Gaussian model of layer displacement fluctuations at time

=0, and linearized hydrodynamics, then the fluctuations of

For N= 100, the typical crossover lengthis=2.7 um. In  the local displacement field(r,t) will be Gaussian at all

the next section, we will concentrate on wavelengths that arémes. Consequently, the dynamic electron density-density

smaller than this. correlation function, which is studied in our x-ray-scattering
Another simple limit of the complicated hydrodynamics Measurements, can be expressed as follows:

of the smecticA phase is obtained whezn~qz~qf. Here, 5 L 5

g, is the wave vector associated with compression of the Ge(rH)=[W]* exp{ —zap([u(r,) —u(r, 019} ()

layers, andy, is the wave vector associated with undulations : .

ofythe Iaygqus. In this regime, the nonlinearities can be neHere.{ - denotes the thermal average using the appropriate

glected an the hycrocynaics can b Inearfzl Ths  [0LZTATT focor Sssociated Wit e ol slasc eneioy
regime will be described in detail in the next section. q

The remainder of this paper is organized as follows. In thethe dynamic density-density correlation function, it is suffi-

second section, we will first discuss the simple Iinearizeoc'em to compute the dynamic displacement-displacement
hydrodynamics of the bulk smectik-phase, and then we correlation function. . . L
will present the dynamic displacement—displacement and the The standard smecti-elastic Hamiltonian is given by
dynamic density-density correlation functions for the au(r)
smecticA phase in the thermodynamic limit. In the third H:%J d3r[B[—
section, we will first present the equations that govern the 92
layer fluctuations in finite smectié-samples(again in the
linearized regimg then we will discuss the relaxation times
of the symmetric and the antisymmetric modes both for pe
riodic boundary conditions and for free surface boundar)}
conditions, and finally, we will present the dynamic KT
) ) : ; . B
displacement-displacement and the dynamic density-density (u(q,0)u(—q,0))= T
correlation functions. In the fourth section, we will briefly Ba;+Ka;
present our experimental results for the overdamped surface . o )
tension modes, and we will show that our results agree witANote that this equation implicitly tells us that the important
our theoretical predictions made in Sec. Ill. In the fifth sec-Wave-vector regime occurs whep~q? JK/B. For typical
tion, we will present a discussion of our results and some othermotropic smectiéx materials, we findyK/B~d, and
the possible future directions. The detailed mathematics besonsequentlyg,<q, . However, for the fluorinated thermo-
hind the second and third sections is relegated to Appendiitopic liquid crystalsB is much largef10]. This means that,
A and Appendix B, respectively. in both cases, the wavelengths of the thermally excited com-
pression modes are much longer than the wavelengths of the
thermally excited undulation modes. As noted above, this
allows us to greatly simplify the hydrodynamics for the
smecticA phase.
The formulation of the linearized hydrodynamics for the
The space- and time-dependent electron depsiiy,t) in ~ smecticA phase can be found, for instance, in REZ3].
the smecticA phase is given—in the zeroth-order approxi- Here we only recall the main assumptions needed in the deri-
mation, which neglects all of the higher-order Fouriervation of the dynamic displacement-displacement correlation
components—by function in Fourier space. The new results concerning the

2

+K[ALU(F)]2}- ®

At t=0, we find that the standard static displacement-
displacement correlation function, in the Fourier representa-
ion, is given by[1]

€)

Il. THE DYNAMIC CORRELATION FUNCTIONS
FOR THE SMECTIC- A PHASE IN
THE THERMODYNAMIC LIMIT
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dynamic density-density correlation function in the thermo-

dynamic limit are contained in Appendix A.
In the Fourier representation, we fifti8,23 the follow-
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(u(g,H)u(—0,0))=(u(q,0)u(—q,0))exp( —t/7g), o

ing coupled equations for the local component of the velocity

in the z directionv,, and for the local displacement field

Ju(g,t
%q&(q,t) (10
and
(9 z ,t)
PO—U ((9? =—730°0v,(q,t) — (Bz+Kal)u(q,b).
(11

Here, pg is the average mass density, and is the layer

where the relaxation time, for the mode is given by23]

2
<
T Rl Kn?

. (17)
Ba;+Kq!

Note that the relaxation time of the undulation mode di-
verges in the limit of smalyj, . This is a direct consequence
of the slow Goldstone mode associated with the broken
translational symmetry. Also note that, for this equation,

sliding viscosity, which is the one viscosity that does notWhich applies in the thermodynamic limit, we have not
diverge in the low-frequency limif18]. These equations r_leeded to consider any boundary conditions. In the next sec-

make intuitive sense. The first one says that the layers moviP

n, we will consider the same linearized hydrodynamics for

up at the same rate as the local fluid does, i.e., that perméhin smecticA films with surface tension and viscosity. As
ation can be neglected. The second equation is just Newton'¥e noted in the Introduction, the finite-size boundary condi-

second law for the acceleration along théirection in terms
of the elastic and viscous forces that act alongatection.
The first term on the right-hand side of Ed.1) is the vis-

tions, the surface tension, and the viscosity all play very
important roles in the dynamic correlation functions for real
films.

cous drag, and the second term is the elastic force, exerted on
the smectic layers. Note that there is no equation for the
density, since it has been assumed that it adjusts to the layer!l- THE DYNAMIC CORRELATION FUNCTIONS FOR

distortions. In fact, these equations can be simplified even
further since the acceleration term on the left-hand side of
Eq. (12) is much smaller than the force terms on the right-

THE SMECTIC- A PHASE IN A FINITE-SIZE
SYSTEM WITH SURFACE TENSION

A. The discrete model for finite-size smecti@ films

hand side. Neglecting the inertial term, we can easily obtain

the velocity associated with the modewhich is given by

(BgZ+Ka?)

vZ(q't):_T u(q,t). (12
1

The freely suspended smec#ctiquid crystal films for
which we are developing the finite-size theory in this section
are perfectly quantized in thedirection (any partial layers
are removed by the surface tensiobut they have continu-
ous two-dimensional fluid order in the two in-plane direc-

ie t(}ions. Consequently, we will use the same one-dimensional

To check the self-consistency of this assumption—i.e.,

check whether the inertial terfiv, is negligible—we can
calculate it directly using Eq12). Then we find

wAat)  (Baz+Ka})
ot 7307

vAQ.t). 13

In the wave-vector regime we are interestedBiZ~ K.
Therefore, using Eqg11) and(13) we find thatpg|dv,/dt|
<739%|v,|, provided that

K
POl <1.

73

(14)

This is clearly true for typical thermotropic parametesg:
~lgcm3 K~10%dyn, and pz~1gcm?lsl for
which poK/ 73~107°. Having established that vare in the
extreme overdamped limit, we can use EtR) in Eq. (10),
which gives

au(q,t)  (Bai+Ka!
pn ——( &L u(g,t). (19

Now we multiply both sides of this equation lofq,0), and
then take the thermal average to obtain

discrete model for the physics that we developed for our
earlier work on the static correlation functiof.

The Hamiltonian for the N+ 1)-layer smecticA discrete
model[5] is given by

N—-1

N-1
H %j der[(B/d)nZO (Un+l_un)2+dKnZl (Alun)z

ALV U+ (VL un) 2T+ KL (A Uug)+ (A uy)?]

(18)

Here,u, (n=0,...N) denotes the deviation of the nth layer
from its equilibrium position, and the surface layer bend
elastic constan acts only at the two surface layers, i.e., at
n=0 andn=N. Of course, in generaK, can be different
from Kd. The unperturbed layers are parallel to #yeplane,
and we will considen,, as a function of both the continuous
variabler , =(x,y) and of the timet. The total force acting
on the nth layer at point, has two contributions: the vis-
cous contributionnsA | du,/dt, and the elastic contribution
—d~16H/6u,. This results in the following set of equations
of motion:
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d%up, dup, Uptq1—2Up+Un_yq ) Note that the decay of thieth normal component is simply
po oz =mAL o 2 —KATu, given by
— _ t
forn=1,..N—1, u(k)(Q,t):u(k)(Q,o)eXF{_T(Q)}, (26)
d%ug AUy _ Up—Up )
dpo iz =dmsd, —=+B — 53—~ KAlUo+ yA, Uy, and that the associated relaxation time is given by
19
(k) =02\ K
dPuy AUy Un_1— Uy ) 79(Q)=QN(Q). (27)
dpo —z =dmsd, —=+B — 57— KAluy

B. The displacement-displacement correlation function

TyALuy. Now that we have obtained the detailed dynamics of the

In our analysis, we will neglect the acceleration term, andaver displacement modes, we can calculate the associated

we will use the translational invariance of the system in the@yer displacement—layer displacement correlation function
xy plane, i.e., we will use for finite-size smectic films.

In the Fourier representation, the displacement-
displacement correlation function is defined as

Chm(Q:1) =(Un(Q,t)ur(—=Q,0)). (28)

Here the equilibrium average is over all possible displace-
fnents att=0. The probability of a given configuration is
proportional to exp{H/kgT). In terms of the normal coordi-
nates, the Hamiltonian is given by

Un(r, ,)=S""2> uy(q, tyexg—ig.-r.), (20
q,

where S is the area of the smectic film. It is convenient to
rewrite the equations of motion in terms of the dimensionles
time: t—t73d/\KB, and it is also convenient to introduce
the two dimensionless vectorsQ=+\dq, and R
=r, /\/\d, where this\ = \K/B. Then the Hamiltonian can

be expressed in terms of the discrete Fourier representation B N
as H=222 2 A9Qu Q)2 (29)
2d § &0
B
H= >d u"(Q)M(Q)u(Q). (21 Consequently, the dynamic displacement-displacement cor-
Q

relation function is given by

Here, u(Q) is the (N+1)X1 matrix with components dkaT —
un(Q) (n=0,...N), u'(Q) is the matrix adjoint tou(Q), Com(Q,1)= ?B Com(Q,1)
and M(Q) is the (N+1)X(N+1) tridiagonal symmetric
matrix defined by

dkgT <
_ — )\(k) -1
Moo=Mnn=a=1+7Q%+K.Q", 5 & \Q]

t
X ex;{ - —T(k)(Q)

. . . where the eigenvectois®(Q) are normalized to unity.
Here we have also introduced the dimensionless surface ten-

sion y=y/{ /KB, and the dimensionless surface layer bend

elastic constankK =K. /Kd. To obtain th dina densitv-densi lati
The equations of motion can now be rewritten in the veryf 0o t?m t eh co:jrgspl)on Ing g‘!"s'lty' ensity correlat!on
compact matrix form unction from the displacement-displacement correlation

function, we start with the center-of-mass density operator

M., =b=2+Q% (22 v (Qw¥F(Q), (30

Min-1=Mpyp1=—1 for n=1,..N—1.

C. The density-density correlation function

, U(Q,t) [5], which is given by
Q" —— = ~MQuQ). (23) "
The formal solution is given by p(r,t)=psnzo (z=nd=un(r, 1)), (3D
u(Q,t)=exd —tM(Q)/Q*Ju(Q,t=0). (24 wherepy is the density of molecules in the smectic layer.

The corresponding density-density correlation function, with

The next step is to find thdl+1 eigenvalues\(Q) and it wave-vector component parallel to thaxis equal tay,,

the associated eigenvectar$?(Q), of the matrixM(Q), s defined to be
and then to expand the formal solution in terms of the eigen-
vectors ofM(Q), to obtain G(r,,0,,H)=(p(r, ,0,,1)p(0,~,0)

N N
u<Q,t>=k§O u9(Q,Hv™(Q). (25 =p§n;:O exdi(n—m)dq,]
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X exd — %qggnm(rL D1, (32 However, the remaining eigenvalues for both the symmetric
and the antisymmetric modes have nonzero limit€as0,
whereg,m(r, ,t) ={[un(r, ,t) —un(0,0)]%). In terms of the and consequently the corresponding relaxation times vanish
dimensionless distand® g, is given by atQ=0.
As shown in Appendix B, the asymptotic form fof®
B — — follows from the rigorous solution of the eigenvalue and ei-
IR = 27JKB Jan Q dQCnp(Q.0+Cm(Q.0) genvector problem. However, it can also be obtained in a
i more straightforward manner directly from the equations of
~2Jo(QRICon(Q.1)], (33  motion Eq.(19). To show this, take the sum from=0 toN
of both sides of this equation. Then, in the Fourier represen-
where Qnin and Qp,.x are the lower and upper cutoffs, re- tation, we find
spectively, andly denotes the zeroth-order Bessel function.
As shown in Appendix B, the matri€,(Q,t) diverges 92u ou vq?
. -2 _ 2 1
like Q™ “ for small wave vectors. Consequently, fe+0, the Po Z =~ 7307 . (N+ 1)d (ug
lower limit of integration in Eq(33) cannot be extended to
zero as is usually done to obtain the static correlation func-
tion. However, to proceed, we can split the to®,(Q,t)  Here, u=3"=u,/(N+1) is the center of mass of the film,
into two parts, namely an asymptotic part and a regular par@nd we have included only the leading termsqin. In the

+uy). (36)

as follows: limit as q, —0, the slowest mode corresponds to a shift of
- - . the whole film without compression. In this casey(
Com(Q,1)=C3(Q,1) +C(Q,t) +uy)/2=u. Now if we also neglect the acceleration term

1 (i.e., take the overdamped limithe asymptotic formula Eq.
() reg (35) follows. Note that in Eq(36), the internal structure of
Q2 exp —t/7! )(O)]+C m(Q.0. (34 the smectic film does not explicitly appear—in other words,
this equation could also describe the motion of an ordinary
Here the relaxation time{®)(Q) corresponds to the lowest |iquid film. We also note that the inertial term is dominated
eigenvalue for the symmetric mod&€”(Q), and the regu- by damping only ifq, exceeds some limiting value. We will
lar part C%%(Q,t) is finite at Q=0. Since A(¥(Q)  show below that this limiting value is of the same order as
~2yQ?/(N+1) asQ—0, the corresponding relaxation time our experimental resolution. Thus, in the following discus-

has a finite limit forQ— 0, which is given by sion, we shall assume the overdamped limit.
Similarly, g,m(R,t) can also be split into asymptotic and
H0)(0)= N+1 regular parts. Performing the straightforward integration, we
(0)= (35 h
obtain
|
kgT
gnm(RD=5— {[1 exp(—t/719(0))]In —+exp( t/79(0)) J T1- Jo(QR)] - (37)

Here only the leading dependence Arhas been included. The regular part is given by

Inm(R,1) = J 'Q dQYCIPYQ,0)+CI¥(Q,00— 234(QRICEYQ, )], (38)

27K

where we have extended the lower limit of integration to zero. The density-density correlation function can now be expressed
as a product of the regular and asymptotic parts, which are given by

N
G™YR,q,,t)=p2 >, exfi(n—m)dg,lexd — 3q2grRYR,1)] (39)

and

y(t)
GAR,q,,t)= (") exp{—x(t) f “[1-3,(QR)] —] (40)

respectively. Herex(t) = (kg Tg2/4my)exp(—t/79(0)), andy(t)=x(0)—x(t). Forr, >ay, Eq.(40) can be written in an
alternative form as
X(t)
exp{ —X(t)

aO y(t) /4. 2w ds 271'R/_80 ds
a1 o [0 S

2m S

ch

aS(R qut) R

’ , (41)
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FIG. 1. The relaxation times of the symmetft&® and the anti- FIG. 2. The relaxation times of the symmett& and the anti-

symmetric(b) modes versu® for a smecticA film with N=5. The = symmetric(b) modes versu® for a smecticA film with N=10.
solid and the dashed lines correspond to free and periodic boundaihe solid and the dashed lines correspond to free and periodic

conditions, respectively. In all cases=6 andK,=1 have been boundary conditions, respectively. In all casgs6 and K,=1
assumed. have been assumed.

f_rom which the algebraic decay fap<R<A follows. Here, Here, k=0,...N, and all the times are shown in units of
aO:aO/,\/E andA=A/y\d. 73d/KB, which are about &10 8 sec, for the typical

The integral of the structurg factor ovgr corrgsponds to thermotropic smectié parameters: K=10"¢ dyn, B=2.5
gEEzg,gz,:g,isagﬁi/;rr:ubsywe find that the scaling form of X107 dyncm?, ps=1gcmts? andd=30A. For the

Hz case of free boundary conditions, and assuming that
ao| YV =30dyncm?, we find that ®(0)=(N+1)/12. For N
G(RZO!qZ!t):(K) G"™(R=00,,t). (42) =100, this gives us the relaxation timg~0.5x 10~° sec.
In the case of the antisymmetric modes, the difference
This means that the leading dependence\da contained in  between films with free and periodic boundary conditions
the scaling factor, and that the evolution of this scaling factogradually disappears &increases. Only the shortest relax-
is governed byr(9(0). ation time exhibits large deviations f@=1. This is be-

In Figs. 1-3, we show the calculated relaxation times asause, in the case of the free boundary conditions, eigenvec-
functions of Q, for smectic films withN=5, 10, and 50 tors of the formv,«z"+2zN"" with z real appear ifQ is
smectic layers. We display the relaxation times separately fosufficiently large, whereas=exp(¢) for smaller values of
the symmetric and the antisymmetric modes. For compariQ (for details, see Appendix B
son, we also display the relaxation times calculated for peri- The difference between the relaxation times of the sym-
odic boundary conditions along theaxis, which are given metric modes, for free vs periodic boundary conditions, is

by much more dramatic. For periodic boundary conditions, the
5 longest relaxation time exhibits @ 2 divergence neaf)
A0(Q)= Q 43) =0, whereas, for free boundary conditions, the longest re-
2—2co$2mk/(N+1)]+Q* laxation time remains finite @=0.
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100 T T g T FIG. 4. Plot of the measured film thickness versus the measured

relaxation times for freely suspended smeidiims of 40.8
(b) (circles and 70.7(squares Our experimental data are in good
sor 7 agreement with our theoretical predictions presented in Sec. lIl.

the second pinhole makes transverse momentum measure-
. ments. Consequently, together these two pinholes defined the

a phase space occupied by the photons. The resulting coher-
ence volume of our incident beam was about 40 by 40 by 44
um, and the coherent intensity was typically (5—%a0®
photons per second.

The measurements were made by reflecting the coherent
photons using thé001) Bragg reflections from the 40.8 and
70.7 films. The 2 Bragg angles for both of thes@0l)

3.0 40 5.0 reflections were about 100°. To detect the single soft-x-ray
Q photons, we developed a special detector that coupled a fast

FIG. 3. The relaxation times of the symmett@ and the anti- ~ SCintillator to a photomultiplier. We used a two-channel
symmetric(b) modes versus) for a smecticA film with N=50.  logarithmic time-base digital autocorrelator to measure the
The solid and the dashed lines correspond to free and periodititensity autocorrelation functions both for the Bragg re-
boundary Condi’[ions’ respective|y_ In all CasEgG and KS:]_ ﬂected I|ght and fOI’ the beam transmitted through the f||m
have been assumed. The transmitted beam intensity autocorrelation function was
used to correct for the fluctuations in the beam from the
IV. EXPERIMENTAL RESULTS synchrqtron—we_; simply divided the Bragg scattering auto-

correlation function by the transmitted beam autocorrelation

We have used soft-x-ray photon correlation spectroscopfunction. Using this form of soft-x-ray photon correlation
to study the behavior of the thermally driven—0 modes Spectroscopy, we measured the fluctuations in the Bragg
in the smecticA phase of freely suspended liquid crystal scattered light due to the thermally driven surface tension
films of two different materials: butoxybenzylidene octala- modes. For each film thickness, we fit the measured fluctua-
niline 40.8 and heptyloxybenzylidene heptylaniline 70.7.tions to a simple exponential decay curve to determine the
We measured the relaxation time of the fluctuations versugelaxation time. To determine the thickness of each film, we
the film thickness for both 40.8 and 70.7. measured the soft-x-ray transmission through it, and then we

The measurements were made using Beamline 7 at thésed tabulated soft-x-ray-absorption coefficients to calculate
Advanced Light Source Facility located at Lawrence Berke-the thickness of each film from our measured soft-x-ray ab-
ley National Laboratory. The partially coherent soft-x-ray Sorption.
source on this beamline waa 5 cmperiod undulator oper- The results of our measurements are shown in Fig. 4,
ated to provide soft x rays with=44 A. The undulator was Where we have plotted the measured film thicknesses in mi-
followed by a soft-x-ray monochromator that had an energyerometers versus the measured relaxation times in microsec-
resolution of about 1 part in £0This increased the longitu- onds. According to the theory developed in Sec. llI, the re-
dinal (tempora) coherence length from the value produced!ationship between the film thicknedsand the relaxation
by the undulator, which was about2®avelengths or 4400 time 7is given by
A, to the value produced by the monochromator, which was
about 18 wavelengths or 44m. The monochromatic beam —
was passed through a double pinhole filter to increase the
transverse(spatia) coherence length. Essentially, the first
pinhole makes position measurements of the photons, anthe straight line behavior shown in Fig. 4 clearly agrees with

6.0 |

73
5} L. (44)
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this predicted linear dependence betwéeand . From the layer fluctuations. Note that the dynamics of th&and K
slopes of our measured data, we find modes cannot be probed in any other way. Unfortunately,
this will greatly reduce the strength of our signal, so we will

2 hed -
<Y —112+11 cm/s for 40.8 (45) need to remove our monochromater and beamllne, we esti
73 mate that this will give us at least a thousandfold increase in
the input beam intensity, and thereby allow us to do the
and experiment.
2y
7 =187+19 cm/s for 70.7. (46) V. DISCUSSION
3

In this paper, we have applied the linearized hydrodynam-
of the smectid phase to determine the dynamic
%Iisplacement-displacement and the dynamic density-density

correlation functions both in the ideal thermodynamic limit
and in the real world, finite-size, nonzero surface tension
smecticA film. To the best of our knowledge, this is the first

) ime that these dynamic correlation functions have been pre-
our th.eory. However, we can still wrn the problem sented in either case. We have also directly measured the
arou_nd. _by combining the measured value for the Surfac‘ﬁwermally driven surface tension modes using coherent soft-
tension W'th the slopes Of. our measurt_ed thickness Vers%—ray photon correlation spectroscopy. The behavior that we
relaxatl_on time plo'_cs_, vye find the following values for the have observed corresponds very nicely with our theoretical
layer sliding viscosities: predictions. There are two clear items remaining on the ex-

The surface tensions of 40.8 and 70.7 have both beei%S
measured 24], and they have the same measured surfac
tension (within the experimental erroys namely y=21
+0.2 dyn/cm. Unfortunately, the layer sliding viscosities do
not appear to have been measured for these two liquid cry
tals, so we cannot do the obvious direct quantitative test o

75=0.380.04 glcms for 40.8 (47) perimental to-do list: (i) we should make independent mea-
surements ofy; to finalize the quantitative test of the over-
and damped limit of the theory, andli) we should extend our
measurements so we can directly probe the thermally driven
73=0.23+t0.02 g{icmyg for 70.7. (48 B andK modes.

We have also applied the linearized hydrodynamical de-

These values of the layer sliding viscosities for 40.8 andscription of the smectié phase to finite-size smect&films
70.7 are similar to previously measured values for the laye(ising a discrete version of the elastic Hamiltonian. We have
sliding viscosities of other smecti-liquid crystals[25].  shown that the longest relaxation time of these finite-size
Since we do obtain straight lines with “somewhat reason-systems remains finite even in the infinite wavelength limit
able” values for s, our experimental results support our of the in-plane fluctuations. We show that the longest relax-
theoretical predictions qualitatively—and “somewhat” ation time remains finite both because of the finite size of the
quantitatively. Of course, direct independent measurementsystem in the normal direction, and also because of the pres-
of 3 for 40.8 and 70.7 will be even more convincing.  ence of the surface tension. These results have important

The overdamping assumed in this comparison meritgonsequences, because the long-distance behavior of the
some discussion. We argued in Sec. Il that this overdampegensity-density correlation function is governed by the long-
limit is self-consistent in a bulk smectic. However, strictly Wave|ength behavior of the disp|acement_disp|acement cor-
speaking, in a finite smectic film, the inertial term in E&9)  relation function. Originally, Cailleshowed that the equal
cannot be neglected when becomes sufficiently small. In time density-density correlation functions decay algebra-

the presence of surface tension, we find that® jcally with a nonuniversal exponeft]. In contrast, we have
~2ydg?/B(N+1), asq, —0. So now, the new finite-size shown that in the case of time-dependent correlation func-
self-consistency condition can be written as tions, the algebraic decay is governed by the time-dependent

exponent(t). This behavior clearly differs from the predic-

PoB)\(O)<l (49) tions for the smectié phase in the thermodynamic limit,
dzngqj ' where the algebraic decay of the time-dependent density-

density correlation function is governed by the same expo-
which breaks down ag, — 0. However, we can use E(9) nent as in the static case. This is because of the divergence of
to determine the range af, for which the inertial term is the relaxation time in the infinite wavelength limit.
dominated by the viscous damping. This is given dpy We have also found an algebraic decay of the density-
>q., where q.=[2poy/73d(N+1)]¥?=[2/(N+1)]¥?  density correlation function with the resolution cutaff The
x10* cm 1. Note that we have used the asymptoticexponent of that decay(t) goes to zero at=0, and goes to
expression forA (%), which is justified here since the sur- x(0)=kBTq§/4wy in the limit ast—o. For typical thermo-
face tension term dominates the layer bend term as longopic parameters: kgT=4x10 '*erg, y=30dyncm?,
as g, <[2y/dK(N+1)]¥?=[2/(N+1)]¥?x10" cm™*. The d=30A, andqg,=2wn/d, we obtainx(0)~0.04h?. Al-
length scale defined by, is comparable to the experimental though this is a rather small number foe= 1, it has a value

resolution cutoffA. around 0.2 for the second peak, which should be more ac-
In the near future, we plan to do experiments with muchcessible experimentally.
higher momentum transfdi.e., AQ away from the Bragg Finally, it will be interesting to study the Fourier trans-

peak, so that we can directly probe the thermally drivenform of the density-density correlation function both in
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space and time, and to study the higher-order correlatiomwhere we have also neglected the fluctuations in
functions, which should be accessible in future experiments(| W (r,t)|2), for the reasons given earlier. Hence, our prob-
However, because of the extraordinary amounts of computdem reduces to calculating

tional work required to perform these studies, we must defer

these problems to the future. 1(r,t)=([u(r,t)— u(0,0)]). (A5)
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d*q 1-exp(—t/7g)cogq-r)
. . _ . (2m)? Ba;+Ka] ’

In this appendix, we derive the real-space, real-time two- (A7)
point density autocorrelation function in a bulk smectic, and
its spatio-temporal Fourier transform.

The electron densitp.(r,t) in a smectic is given by

APPENDIX A (r,t)=2ksT

where 7= 7309°/(Baz+Kq?).

Evaluating the integrals ovey, we obtain
pe(r, 1) =W (r,t)e'%%+ p,+c.c., (A1)
N
ao

(A8)

2R

73 H 4\|Z|

k
where I(r,t)= 4wf/ﬁ {2 n
W(r,t)=|W(r,t)edur, (A2)

Here, u(r,t) is the local displacement field of the layers, with
| P (r,t)]| is the local amplitude of the density ways, is the
background density, and c.c. stands for complex conjugate. g(x,y)=Ei(-y)—3f(x.y), (A9)
Now in the smectic phase itsel—i.e., well below the
nematic-to-smectiéx phase transition—the fluctuations in \here
the amplitudg ¥ (r,t)| are negligible. In fact, this is always
a good approximation at sufficiently smaglland w—i.e., for o a—U
gé<1l and wr<1, where ¢T) and 7(T) are the Ei(_y)z_f € du (A10)
temperature-dependent correlation lengths and relaxation y U
times, respectively. Of course, there amgo correlation
lengths,¢, and¢;, in the nematic and the smec#cphases, s the “exponential integral” functiorj28], and where
due to the anisotropic structure of these two phases.

We will restrict ourselves to this “hydrodynamic limit”

whereq, &, , q,¢,, andwT are all <1, and we will ignore f(x )EJX du oxd — yu | yu
fluctuations in|'¥(r,t)|. We then have Y=, Ji+u? 1+u?) % 1+u?)

(A11)
Ge(rat):<pe(rat)l)e(0:o)>
:|q,|2<eiq0[u(r,t)fu(O,O)]>eiqoz+C c (A3) Here, 15(2) is the Bessel function of imaginary argument
o [28].

We proceed by approximating the fluctuationsiias Gauss- Using this result for (r,t) in Eq. (A4), we obtain

ian and accurately described by harmonic elastic theory and

linearized hydrodynamicf26]. We will also use linearized an ~27 [2.BKt rf
hydrodynamics to treat thdynamicsof the u field [27]. Ge(r.)=[¥| a_o m m » (A12)
Given this, the fluctuations im(r,t) are Gaussian for all

times—they are Gaussian &0 because the elasticity is

harmonic, and they remain Gaussian at later times becaugléhere

the dynamics is linear. Hence we can use the general result

that for any Gaussian variable (exp())=exp(x?)/2), pro- h(x,y)=exp(79(X,y)) (A13)
vided that (x)=0. Thus, we can simplify Eq(A3) for

Ge(r,t) to and 7= q3kgT/(87\/BK). This intimidating expression for-

) Lo 5 tunately simplifies in several limits.
Ge(r,t)=[W[* exp{— za5([u(r,t) —u(0,019)}, (Ad) (i) Limit one:
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L S 1-2
Q(x,y)=2——| dz| dryr;~“"
A Jo 0
2

X ri
Xh 22z cogyz)Jo(r ). (A19)

HereJ, is the zeroth-order Bessel functiofl(x,y) must be
evaluated numerically. To do so, we need to know the value
of », which can be obtained from the following two limits:

where c~0.577 is Euler's constant. High-resolution x-ray and

measurements can typically probe length scales up to at least

3000 A. Takingz to be of this order,»; to be of order
1gcm9™%, B to be 5<10" dyncm?, and K to be 5
x10 7" dyn, we obtain a crossover timeps|z|/BK

~10 8 s, or, equivalently, a crossover frequency of about 73

B Kltla?
Ge(q,t)OCqLAHZ”, _L<1, |qz_qo|<)\(ﬁ
(A20)
Ge(a,t)=[g,—qo| 277,
BKi|t -
VBKIt||q, QO|<1' a21)

one megahertz. The values used in this estimate are typical

values forthermotropicsmectic liquid crystals; in lyotropic
smectic liquid crystalsB can be 40 times larger.
(ii) Limit two:

r.>y\|zl and Kt/ s,

Ge(r, ,z,t)=|V¥|? (A15)

r
Qo

To summarize, the scaling forms of the dynamic density-

density correlation function are given by

( 4AN|z|\ ™
I‘lflz% ", |zl
0
L[ 16Kt "7
Ge(r,,z)=¢ |V| g e, tox (A16)
390
2 r 2
|\I}| -~ 1 rl_>oo_
\ a,

la,— gol>Naf.

For example, fittingG¢(q,t) to the power laws in these two
limits will determine . Then, the resulting; can be used to
calculate the scaling functiof(x,y) via Eq. (A19). Note
that even without doing the full calculation, the scaling form
given by Eqg.(A18) can still be used to collapse an immense
amount of data, and that the only fitting parameters gre
K/7n5 (which sets the time scaleand A (which sets the
length scalg

Fourier transforming in time as well gives

Ge(q-w)Ej dt e '“'Ge(q,t)

2Ka? |a,—qol
— 6127,
a; <I>(—773w vl (A22)

where

2 0
D(x,y)= R C cogt)Q(ty).  (A23)
VKB Jo

Note that the ratios of these various limits are known exactly

once 7 is known.

In principle, inelastic x-ray scattering can be used to mea- 2

sure the spatio-temporal Fourier transformGaf(r,t). First,
Fourier transforming in space gives

Ge(q,t)=f d3r !9 Gy(r,1). (A17)

In general, this must be evaluated numerically. However, it

can be shown to obey the scaling law

B 2K|tlg? q,—q
Ge<q,t>=qﬁ”2”9( 73 X iqzo
1

) . (A19)

where the scaling function

This also has simple scaling forms in a few limits,

|qz_q0|
Gu(q,w)xq; 7?7 when *>1 and <1,
(g, w)q; 720 N
(A24)
Ge(q,w)=q, **7
VvKB|g,— —
when M>l and 19 30|>1,
n3w n
(A25)
Ge(q7w)mw73+ﬂ
JKBlaq,— Kaq?
when M« and —L<q. (A26)
3w 3w
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For simplicity, Eqs.(A24), (A25), and (A26) are theq,
—®, |g,—Qo|—*, andw— = limits, respectively.

APPENDIX B

In this appendix, we derive closed-form expressions forT
the eigenvalues and the eigenvectors of the coupled dynami
cal equations for finite-size smectic liquid crystals. To find

the diagonal representation Bf(Q), we must solve the fol-
lowing set of equations:

—vp_1tbv,—vh1=Av, for n=1,..N-1,
aUO_U]_:)\Uo,

_UN,1+aUN:)\UN .

A. PONIEWIERSKI et al.
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To find the closed-form expression that we seek, we first

introduce the projection matrice®=(z,), which are given
by

Pom(Z0=Ne(z)(Z3=Zd (¢ =z™™).  (B4)

he normalization results from the conditioR*(z,)?

=P~(z), hence

1 2(N+1)_ 17-1

Na(z)==| =(N+1) 2N+ = (B5)
+{4k 2 - k Zﬁ_l

Since V..(1/z) = "N+ (z), we haveP™(1/z)=P*(z,).
Then using Eq(B3), we find that

Note that here)\ denotes an eigenvalue—which should not; is convenient to expresB*(z,) as

be confused with/K/B.

First, we verify that the eigenvectors are either symmetric

or antisymmetric with respect to the transformatios>N
—n. So, we must show that

va*Zirz ", (B2)

wherez, is a root(real or complex of one of the two poly-
nomials

f(2)=2N"2+ kNt 1x (kz+1).

Here, k=a—b=yQ?+ (K;—1)Q*— 1. The eigenvalue cor-
responding taz, is AW =b—z,—1/z,. SinceA®™® must be

real, z, is either real oiz,=exp(¢,). It can be shown that if
| k| <1, then only the rootg,=exp(¢,) are possible. How-
ever, for|k|>1, some of the roots are real. From EB3),

we see thaf . (z)=+2zN"?f, (1/z), hence all the roots ap-
pear in pairs of the form#.,1/z/). In general, the roots of

1
f..(2) can only be found numerically. However, it is possible o

to find a contour integral representation MIf(Q), which

(B1)

Ne(zg=s ®6)

2fl(z)

* _ Fr?m(zk)
an(zk)— f;(Zk) , (B?)

where
Fntm(z):i%(Z‘f‘K)(Zn*m_f_ZZan—m)
(kz+1)2
I —n=m| o KAL) )
Fogn|ler” T2zt )

. (B8)

Here we have used the relatior] "*= + (xkz+1)/(z
+«). Since all of the roots of the polynomiafs.(z) are
single roots(except for some special values gf, we can
treat the right-hand side of E@B7) as a residue of the func-
tion F,,,(2)/f.(2) atz=z,. Then we have

N

é Hnm(z)dZZE [Pnm(Z) + Pam(1/2) 1= 260,
C k=0

also leads to an explicit closed-form expression for (B9)
M~ YQ). where
F:m(Z) F;m(Z) n+m 2N—n—m 22N
= = - —-n— —In—-m|+1
Ho,m(2) (2 (2 f+(z)f,(z){ (z+ k) (kz+1)(Z""M+2z V+(z+ Kk)°z
+(kz+1)2Zn-mi-1, (B10)

The contour of integration is chosen in such a way that all

the roots off..(z) are insideC, whereas outsid€, z=0.
Depending on whetheX is even or odd, eithez=1 or —1

1 1
(M) = $ @A) Ham(Ddz (B1D

are also roots of . (z). However, it is easy to check that where\(z)=b—z— 1/z, provided thai®(\(z)) is holomor-
they are regular points ¢ ,,(z). Thus, the sumin EJB9)  phic insideC. If we use the theorem that the sum of all the
is over 2(N+ 1) roots of the polynomiat , (z)f _(z), which  residues vanishe@ncluding the residue at=~), we can
are all distinct fromz=*=1. That is to say, the sum is over expressb(M) as follows:

N+1 pairs of the form %,,1/z,), and P, corresponds to
eitherP, . or P .. Using this method, we can define a ma-

. : [@(M)]om=—3 2, re§ @\ (2DHnm(2)], (BL2)
trix function ®(M) as follows: z#7
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where the sum is over all singular points of the functbt\ (z))H,(z) other than the roots df. (2).
Now we can easily find an explicit closed-form expression for the inverse nidtriX(Q). We simply have

{Han(Eh
-0

wherex({)=\(1/0) =0, {=1+Q*2+Q?%/1+Q%4. Because of the relatioH,,(1/z) = — z2H(2), the residues at=¢
andz=1/{ are equal. After some algebra, we find that

[Mil]nm:_rei)\il(éﬁl)Hnm(gil)]: (B13)

(1_Vz)(g—n—m+g—2N+n+m)+(1+V)Zé«—ln—m\+(l_V)2€—2N+\n—m|
M™1,,= B14
M 2Q%1+ QYA (1+v)2— (1-v)2 2N ’ (B

where model. For example, in our discrete model, the diagonal
- components decay lik®~*, whereas, in contrast, in the con-
(K= 1/2)Q? tinuous model of Ref[10] the diagonal components only
Ve J1+Q%4 decay likeQ 2, which leads to a logarithmic divergence of
the displacement-displacement correlation function with the
The above expression can be compared with the similar exapper cutoffQ,,... To avoid this divergence, an extra real-
pression in Ref[10] obtained for a continuous model of the space cutoff was introduced in R¢f.0], which means that
smecticA film. In that model, the authors used a continuousthe z coordinate of a single layer is not defined precisely. In
variablez, instead of a discrete layer indexto describe the other words, in Ref[10], it was assumed that the distance
position of an unperturbed layer. In the limit of sm@l—  |z—2z’| between two layers has some minimal value, which
i.e., whenZ~exp@Q?) and v~ y—both expressions have the was chosen to bd/4. However, in our discrete model, this
same functional form. However, in the discrete model, theproblem does not appear, because the equilibrium position of
decay ofM ~1(Q) asQ—x is faster than in the continuum every layer is well defined.
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