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Dynamic correlation functions for finite and infinite smectic-A systems: Theory and experiment
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In this paper, we present the dynamic layer displacement–layer displacement and the dynamic density-
density correlation functions—both for smectic-A systems in the thermodynamic limit, and for real smectic-A
films that have finite size, nonzero surface tension acting at the two free surfaces, and nonzero layer sliding
viscosity. We also present the results of our soft-x-ray photon correlation spectroscopy experiment, which we
have used to directly measure the dynamic density-density correlation function for two different liquid crystals
~4O.8 and 7O.7! in the overdamped surface tension restoring force limit of our theory. We used linearized
hydrodynamics to first calculate the behavior of smectic-A systems in the thermodynamic limit, and then to
calculate the behavior for real, finite size, nonzero surface tension freely suspended liquid crystal films. For
the real films, we used the linearized smectic-A hydrodynamic equations and the Gaussian model for the layer
fluctuations to compute the set of relaxation times for the displacement field in a finite smectic-A film bounded
by two free surfaces. We find that all of the relaxation times have maxima at nonzero values of the transverse
wave vectorq' . For thicker films the maxima shift towardsq'50 and grow linearly with the number of
smectic layersN11. For finiteN all of the relaxation times tend to zero asq'→0, except one that attains the
finite valuet (0)(0)5(N11)h3d/2g, whereh3 is the layer sliding viscosity,d is the smectic period, andg is
the surface tension. We find that the time-dependent scattering intensity integrated overq' has the simple
scaling formS(qz ,t);(a0 /L)y(t), wherea0 andL are the molecular size cutoff and the instrument resolution
cutoff, respectively, and the time-dependent exponenty(t)5(kBTqz

2/4pg)@12exp„2t/t (0)(0)…#. Our results
clearly show that the boundary conditions strongly affect the hydrodynamics of real smectics.
@S1063-651X~98!10408-7#

PACS number~s!: 61.30.Cz, 83.70.Jr
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I. INTRODUCTION

The six three-dimensional fluid smectic liquid crystals
namely, the two untilted smectic-A and hexatic-B phases,
and the four tilted smectic-C, smectic-F, smectic-I, and
smectic-L phases—are the only systems that we have wh
are precisely at their lower marginal dimensionality in thr
dimensions, i.e., for these systemsd053. Consequently,
there has been some beautiful, seminal theoretical@1# and
experimental@2# work on the nonuniversal algebraic dec
of the static density-density correlation functions in t
smectic-A phase. This algebraic decay of the static corre
tion functions is produced by the divergent thermal fluctu
tions that occur in a system that is precisely at its low
marginal dimensionality. These six smectic phases at t
lower marginal dimensionality can each be thought of as
extended line of critical points. On the other hand, what
the dynamic correlation functions, and how can we meas
them, in a system that is precisely at its lower marginal
mensionality?

There has also been some recent work@3–5# bridging the
gap between the algebraic singularities in the static corr
tion functions—which only occur in the thermodynam
limit—and the actual nondivergent behavior that occurs
real, finite-size, nonzero surface tension, nonzero visco
PRE 581063-651X/98/58~2!/2027~14!/$15.00
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systems. Surprisingly, the effects of the Landau-Peierls fl
tuations, which destroy the long-range order in the therm
dynamic limit, also produce substantial effects in extrem
thin liquid crystal films@3–5#, but the crossover to the ther
modynamic limit is extremely slow. This extraordinar
large-length-scale crossover also occurs in two-dimensio
melting. For example, it was originally suggested@6# that the
required system size to observe Kosterlitz-Thoule
Halperin-Nelson-Young melting in helium was about 1013

31013 lattice constants, or about 500 m by 500 m, and t
the associated time scales would be extremely slow. Sho
afterwards, it was shown@7# that the required system siz
was ‘‘only’’ about 1083108 lattice constants, or about 0.
mm by 0.5 mm. Of course, all of the definitive experimen
were done with effective system sizes less than about3

3103 lattice constants, or about 2000 Å by 2000 Å. One
the most important lessons of this era was that finite-s
systems could be used to measure, and to calculate, the
cursor behavior long before the thermodynamic limit.

Although the bulk smectic-A phase is always technicall
at lower marginal dimensionality, the layer compressi
elastic constantB grows rapidly away from the nematic-to
smectic-A transition@8#, and consequently over much of th
phase we must go to extremely large system sizes before
root-mean-square layer fluctuation amplitude^u2&1/2 be-
2027 © 1998 The American Physical Society
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comes comparable to the layer spacingd. The three-
dimensional liquid crystal version@3,5# ~i.e., the theory for a
finite-size smectic-A system embedded in three-dimension
space! of the two-dimensional melting calculation predic
that

^u2&1/25F kBT

4pAKB
ln~L/a0!G 1/2

'~2.5 Å!Aln~L/a0!,

~1!

whereK is the layer bend elastic constant,L is the linear size
of the sample, anda0 is a molecular size beyond which th
elastic theory breaks down. The above 2.5 Å is obtained
kBT54310214 erg and for typical smectic-A parameters:
B52.53107 dyn/cm2 and K51026 dyn. We also assume
that the molecular cutoffa055 Å and the layer spacingd
530 Å. This equation predicts that the size of the syst
must be about the same as the size of the earth before the
layer fluctuation amplitude is equal to about one-half of
layer spacing, and that it must be about 231052 m, which is
about 231037 light years—or about 231027 times larger
than the estimated current diameter of the universe, whic
about 109 light years—before the rms layer fluctuation am
plitude is equal to the layer spacing. The main point here
course, is that the logarithmic divergence is extremely sl
It is clearly impossible to do experiments on systems t
large—or to turn off the surface tension, or to turn off t
viscosity. Consequently, it is important to understand w
happens in real, finite-size samples with both surface ten
and viscosity included.

Although there has been beautiful theoretical and exp
mental work on the static correlation functions, there h
been very little work on the dynamic correlation function
Our goal in this paper is to answer three of the obvio
fundamental questions about the dynamic critical behavio
the smectic-A phase, namely~i! What is the dynamic laye
displacement–layer displacement correlation function,
what is the corresponding density-density correlation fu
tion, for the smectic-A phase in the thermodynamic limit?~ii !
What happens in real samples, i.e., what are the effect
finite-system size, nonzero surface tension, and nonzero
cosity on the dynamic displacement-displacement and
dynamic density-density correlation functions?~iii ! How can
we probe the dynamic density-density correlation function
the smectic-A phase experimentally? We will answer the
three questions, one at a time, in the next three secti
Surprisingly, we find that the effects of finite-system size a
of nonzero surface tension on the dynamics of the Land
Peierls fluctuations are much larger than their effects on
statics. On the experimental side, this is still a work
progress. We have measured the thermally driven fluc
tions for two different liquid crystals in the overdampe
limit, where the restoring force is due to the surface tens
g, and the damping is due to the layer sliding viscosityh3 .
However, our results indicate that we will also be able to u
our technique—which is soft-x-ray photon correlatio
spectroscopy—to measure the thermally driven fluctuati
where the layer compression elastic constantB and the layer
bend elastic constantK provide the restoring forces, and th
layer sliding viscosityh3 provides the damping.
l
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The four hydrodynamical variables in smectic-A liquid
crystals are the densityr, the velocity fieldv, and the layer
displacement fieldu, which is associated with the broke
translational symmetry. One goal of this paper is to provid
detailed analysis of the dynamic displacement-displacem
correlation function, including its relaxation time, both in th
thermodynamic limit for bulk smectic-A systems, and in
finite-size smectic-A films with surface tension.

Freely suspended smectic liquid crystal films are nea
perfect model systems for the study of the influence of
boundary conditions on the different static properties of
smectic phases. For example, the smectic layer fluctuat
have been studied both by x-ray scattering@4,9,10# and by
laser light scattering@11,12#. There have also been studies
the meniscus and the dislocations@13#, and studies of the
surface-induced phase transitions@14–16#. These studies
have shown that both the nonzero surface tension and
finite size strongly influence the behavior of these syste
For example, when the surface tension is large, it quenc
the smectic layer fluctuations, and this quenching produ
an enhanced x-ray specular reflectivity—this clearly dem
strates that the static displacement-displacement correla
functions are strongly influenced by the surface tensions
ing at the two free surfaces@3,4,5,10#. In this paper, we will
discuss the influence of finite system size, surface tens
and viscosity on the dynamic correlation functions
smectic-A films.

The full hydrodynamic behavior of the smectic system
that we are interested in is very complicated since there
five viscosities involved@17#. Four of these diverge asv21

in the low-frequency limit@18#. These divergences are th
direct consequence of the anharmonic terms in the ela
energy of the smectic-A phase, which are required by th
rotational invariance of the free energy@19#. However, for-
tunately, there are a few limits where the hydrodynamics
reasonably simple. One simple regime occurs for very lo
frequency (v<50 kHz) and long-wavelength (l>0.1 cm)
vibrations of freely suspended smectic-A films. Experimental
studies@20,21# of the eigenfrequencies of vibrating films i
this regime show that the equation of motion is just t
simple wave equation

2gS ]2u

]x2 1
]2u

]y2D2r0Nd
]2u

]t2 50. ~2!

Here,u is the vertical displacement of the film from its equ
librium position,r0 is the density of theN-layer film, and the
surface tensiong acts at the two free surfaces.

In their derivations of this simple wave equation, the
authors@20,21# assumed that only the density changes—i
they assumed that both the permeation and the heat tra
can be neglected, and they also assumed that the inte
structure of the film remained unchanged. The neglect of
changes in the internal structure is justified for lon
wavelength, low-frequency vibrations because the curva
energy associated withK, and the layer compression energ
associated withB, are both very small compared to the e
ergy associated with the surface tension term. Using the t
cal valuesd530 Å, K51026 dyn, andl50.1 cm, we find

Kdq2/g;10214, ~3!
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where q52p/l is the modulus of the wave vector. Th
compression of the film can be neglected, because the el
constant associated with compression is so large~typically
B'107 dyn/cm2) that B/d@2gq2. This means that the lay
ers vibrate without appreciably changing their thicknes
@22#. Finally, we can also neglect the viscosity term in t
equation of motion, for reasons that will be discussed in
next two sections.

However, when the wavelength of the vibrations g
smaller, and/or the thickness of the film gets larger, then
internal structurewill play a non-negligible role. We ca
estimate@22# that this will start to happen when

2gq'
2 dN

B
;0.1. ~4!

Using our set of typical parameters above, we find that
crossover starts when

2.73103 AN'lc ~measured in Å!. ~5!

For N5100, the typical crossover length islc52.7mm. In
the next section, we will concentrate on wavelengths that
smaller than this.

Another simple limit of the complicated hydrodynami
of the smectic-A phase is obtained whenv;qz;q'

2 . Here,
qz is the wave vector associated with compression of
layers, andq' is the wave vector associated with undulatio
of the layers. In this regime, the nonlinearities can be
glected and the hydrodynamics can be linearized@18#. This
regime will be described in detail in the next section.

The remainder of this paper is organized as follows. In
second section, we will first discuss the simple lineariz
hydrodynamics of the bulk smectic-A phase, and then we
will present the dynamic displacement–displacement and
dynamic density-density correlation functions for t
smectic-A phase in the thermodynamic limit. In the thir
section, we will first present the equations that govern
layer fluctuations in finite smectic-A samples~again in the
linearized regime!, then we will discuss the relaxation time
of the symmetric and the antisymmetric modes both for
riodic boundary conditions and for free surface bound
conditions, and finally, we will present the dynam
displacement-displacement and the dynamic density-den
correlation functions. In the fourth section, we will briefl
present our experimental results for the overdamped sur
tension modes, and we will show that our results agree w
our theoretical predictions made in Sec. III. In the fifth se
tion, we will present a discussion of our results and some
the possible future directions. The detailed mathematics
hind the second and third sections is relegated to Appen
A and Appendix B, respectively.

II. THE DYNAMIC CORRELATION FUNCTIONS
FOR THE SMECTIC- A PHASE IN
THE THERMODYNAMIC LIMIT

The space- and time-dependent electron densityre(r ,t) in
the smectic-A phase is given—in the zeroth-order appro
mation, which neglects all of the higher-order Four
components—by
tic
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re~r ,t !5const1uC~r ,t !uexp$ iq0@z1u~r ,t !#%1c.c. ~6!

Here, C(r ,t) represents the local amplitude of the dens
wave, u(r ,t) represents the local displacement field of t
layers, q052p/d represents the wave number associa
with the layer spacingd, the layers are perpendicular to thez
axis, and c.c. denotes the complex conjugate of the sec
term. We note in passing that an electron density alm
indistinguishable from the simple form given by Eq.~6! is
obtained if we convolve the molecular center-of-mass pr
ability distribution with the electron density of a sing
liquid-crystal molecule. The molecular center-of-mass dis
bution can be well approximated by the sum of Gauss
distributions, in which thei th Gaussian distribution is cen
tered at the equilibrium position of thei th smectic layerzi ,
and depends only on the distance from that layeruz2zi u @4#.
Away from the nematic-to-smectic-A phase transition, we
can neglect the fluctuations in the amplitude and concent
on the layer displacement fluctuations. If we consider
Gaussian model of layer displacement fluctuations at timt
50, and linearized hydrodynamics, then the fluctuations
the local displacement fieldu(r ,t) will be Gaussian at all
times. Consequently, the dynamic electron density-den
correlation function, which is studied in our x-ray-scatteri
measurements, can be expressed as follows:

Ge~r ,t !5uCu2 exp$2 1
2 q0

2^@u~r ,t !2u~r ,0!#2&%. ~7!

Here,^¯& denotes the thermal average using the appropr
Boltzmann factor associated with the full elastic energ
Note that it follows from this equation that in order to fin
the dynamic density-density correlation function, it is suf
cient to compute the dynamic displacement-displacem
correlation function.

The standard smectic-A elastic Hamiltonian is given by

H5 1
2 E d3r H BF]u~r !

]z G2

1K@D'u~r !#2J . ~8!

At t50, we find that the standard static displaceme
displacement correlation function, in the Fourier represen
tion, is given by@1#

^u~q,0!u~2q,0!&5
kBT

Bqz
21Kq'

4 . ~9!

Note that this equation implicitly tells us that the importa
wave-vector regime occurs whenqz'q'

2 AK/B. For typical
thermotropic smectic-A materials, we findAK/B'd, and
consequently,qz!q' . However, for the fluorinated thermo
tropic liquid crystals,B is much larger@10#. This means that,
in both cases, the wavelengths of the thermally excited co
pression modes are much longer than the wavelengths o
thermally excited undulation modes. As noted above, t
allows us to greatly simplify the hydrodynamics for th
smectic-A phase.

The formulation of the linearized hydrodynamics for th
smectic-A phase can be found, for instance, in Ref.@23#.
Here we only recall the main assumptions needed in the d
vation of the dynamic displacement-displacement correla
function in Fourier space. The new results concerning
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dynamic density-density correlation function in the therm
dynamic limit are contained in Appendix A.

In the Fourier representation, we find@18,23# the follow-
ing coupled equations for the local component of the veloc
in the z directionvz , and for the local displacement fieldu,

]u~q,t !

]t
5vz~q,t ! ~10!

and

r0

]vz~q,t !

]t
52h3q'

2 vz~q,t !2~Bqz
21Kq'

4 !u~q,t !.

~11!

Here, r0 is the average mass density, andh3 is the layer
sliding viscosity, which is the one viscosity that does n
diverge in the low-frequency limit@18#. These equations
make intuitive sense. The first one says that the layers m
up at the same rate as the local fluid does, i.e., that per
ation can be neglected. The second equation is just Newt
second law for the acceleration along thez direction in terms
of the elastic and viscous forces that act along thez direction.
The first term on the right-hand side of Eq.~11! is the vis-
cous drag, and the second term is the elastic force, exerte
the smectic layers. Note that there is no equation for
density, since it has been assumed that it adjusts to the l
distortions. In fact, these equations can be simplified e
further since the acceleration term on the left-hand side
Eq. ~11! is much smaller than the force terms on the rig
hand side. Neglecting the inertial term, we can easily ob
the velocity associated with the modeq, which is given by

vz~q,t !52
~Bqz

21Kq'
4 !

h3q'
2 u~q,t !. ~12!

To check the self-consistency of this assumption—i.e.,
check whether the inertial term] tvz is negligible—we can
calculate it directly using Eq.~12!. Then we find

]vz~q,t !

]t
52

~Bqz
21Kq'

4 !

h3q'
2 vz~q,t !. ~13!

In the wave-vector regime we are interested in,Bqz
2;Kq'

4 .
Therefore, using Eqs.~11! and ~13! we find thatr0u]vz /]tu
!h3q'

2 uvzu, provided that

r0K

h3
2 !1. ~14!

This is clearly true for typical thermotropic parameters:r0
'1 g cm23, K'1026 dyn, and h3'1 g cm21 s21, for
which r0K/h3

2'1026. Having established that weare in the
extreme overdamped limit, we can use Eq.~12! in Eq. ~10!,
which gives

]u~q,t !

]t
52S Bqz

21Kq'
4

h3q'
2 D u~q,t !. ~15!

Now we multiply both sides of this equation byu(q,0), and
then take the thermal average to obtain
-
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^u~q,t !u~2q,0!&5^u~q,0!u~2q,0!&exp~2t/tq!,
~16!

where the relaxation timetq for the mode is given by@23#

tq5
h3q'

2

Bqz
21Kq'

4 . ~17!

Note that the relaxation time of the undulation mode
verges in the limit of smallq' . This is a direct consequenc
of the slow Goldstone mode associated with the brok
translational symmetry. Also note that, for this equatio
which applies in the thermodynamic limit, we have n
needed to consider any boundary conditions. In the next
tion, we will consider the same linearized hydrodynamics
thin smectic-A films with surface tension and viscosity. A
we noted in the Introduction, the finite-size boundary con
tions, the surface tension, and the viscosity all play v
important roles in the dynamic correlation functions for re
films.

III. THE DYNAMIC CORRELATION FUNCTIONS FOR
THE SMECTIC- A PHASE IN A FINITE-SIZE

SYSTEM WITH SURFACE TENSION

A. The discrete model for finite-size smectic-A films

The freely suspended smectic-A liquid crystal films for
which we are developing the finite-size theory in this sect
are perfectly quantized in thez direction ~any partial layers
are removed by the surface tension!, but they have continu-
ous two-dimensional fluid order in the two in-plane dire
tions. Consequently, we will use the same one-dimensio
discrete model for thez physics that we developed for ou
earlier work on the static correlation functions@5#.

The Hamiltonian for the (N11)-layer smectic-A discrete
model @5# is given by

H5 1
2 E d2r'H ~B/d! (

n50

N21

~un112un!21dK (
n51

N21

~D'un!2

1g@~¹'u0!21~¹'uN!2#1Ks@~D'u0!21~D'uN!2#J .

~18!

Here,un (n50,...,N) denotes the deviation of the nth laye
from its equilibrium position, and the surface layer be
elastic constantKs acts only at the two surface layers, i.e.,
n50 andn5N. Of course, in general,Ks can be different
from Kd. The unperturbed layers are parallel to thexy plane,
and we will considerun as a function of both the continuou
variabler'5(x,y) and of the timet. The total force acting
on the nth layer at pointr' has two contributions: the vis
cous contributionh3D']un /]t, and the elastic contribution
2d21dH/dun . This results in the following set of equation
of motion:
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r0

]2un

]t2 5h3D'

]un

]t
1B

un1122un1un21

d2 2KD'
2 un

for n51,...,N21,

dr0

]2u0

]t2 5dh3D'

]u0

]t
1B

u12u0

d
2KsD'

2 u01gD'u0 ,
~19!

dr0

]2uN

]t2 5dh3D'

]uN

]t
1B

uN212uN

d
2KsD'

2 uN

1gD'uN .

In our analysis, we will neglect the acceleration term, a
we will use the translational invariance of the system in
xy plane, i.e., we will use

un~r' ,t !5S21/2(
q'

un~q' ,t !exp~2 iq'•r'!, ~20!

whereS is the area of the smectic film. It is convenient
rewrite the equations of motion in terms of the dimensionl
time: t°th3d/AKB, and it is also convenient to introduc
the two dimensionless vectorsQ5Aldq' and R
5r' /Ald, where thisl5AK/B. Then the Hamiltonian can
be expressed in terms of the discrete Fourier representa
as

H5
B

2d (
Q

u†~Q!M ~Q!u~Q!. ~21!

Here, u(Q) is the (N11)31 matrix with components
un(Q) (n50,...,N), u†(Q) is the matrix adjoint tou(Q),
and M (Q) is the (N11)3(N11) tridiagonal symmetric
matrix defined by

M005MNN5a511ḡQ21K̄sQ
4,

Mnn5b521Q4, ~22!

Mnn215Mnn11521 for n51,...,N21.

Here we have also introduced the dimensionless surface
sion ḡ5g/AKB, and the dimensionless surface layer be
elastic constantK̄s5Ks /Kd.

The equations of motion can now be rewritten in the ve
compact matrix form

Q2
]u~Q,t !

]t
52M ~Q!u~Q,t !. ~23!

The formal solution is given by

u~Q,t !5exp@2tM ~Q!/Q2#u~Q,t50!. ~24!

The next step is to find theN11 eigenvaluesl (k)(Q) and
the associated eigenvectorsv (k)(Q), of the matrix M (Q),
and then to expand the formal solution in terms of the eig
vectors ofM (Q), to obtain

u~Q,t !5 (
k50

N

u~k!~Q,t !v ~k!~Q!. ~25!
d
e

s

on

n-
d

y

-

Note that the decay of thekth normal component is simply
given by

u~k!~Q,t !5u~k!~Q,0!expF2
t

t~k!~Q!G , ~26!

and that the associated relaxation time is given by

t~k!~Q!5Q2/l~k!~Q!. ~27!

B. The displacement-displacement correlation function

Now that we have obtained the detailed dynamics of
layer displacement modes, we can calculate the assoc
layer displacement–layer displacement correlation funct
for finite-size smectic-A films.

In the Fourier representation, the displaceme
displacement correlation function is defined as

Cnm~Q,t !5^un~Q,t !um~2Q,0!&. ~28!

Here the equilibrium average is over all possible displa
ments att50. The probability of a given configuration i
proportional to exp(2H/kBT). In terms of the normal coordi-
nates, the Hamiltonian is given by

H5
B

2d (
Q

(
k50

N

l~k!~Q!uu~k!~Q!u2. ~29!

Consequently, the dynamic displacement-displacement
relation function is given by

Cnm~Q,t !5
dkBT

B
C̄nm~Q,t !

5
dkBT

B (
k50

N

@l~k!~Q!#21

3expF2
t

t~k!~Q!Gvn
~k!~Q!vm

~k!~Q!, ~30!

where the eigenvectorsv (k)(Q) are normalized to unity.

C. The density-density correlation function

To obtain the corresponding density-density correlat
function from the displacement-displacement correlat
function, we start with the center-of-mass density opera
@5#, which is given by

r̂~r ,t !5rs(
n50

N

d„z2nd2un~r' ,t !…, ~31!

where rs is the density of molecules in the smectic laye
The corresponding density-density correlation function, w
its wave-vector component parallel to thez axis equal toqz ,
is defined to be

G~r' ,qz ,t !5^r̂~r' ,qz ,t !r̂~0,2qz,0!&

5rs
2 (

n,m50

N

exp@ i ~n2m!dqz#
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3exp@2 1
2 qz

2gnm~r' ,t !#, ~32!

wheregnm(r' ,t)5^@un(r' ,t)2um(0,0)#2&. In terms of the
dimensionless distanceR, gnm is given by

gnm~R,t !5
kBT

2pAKB
E

Qmin

Qmax
Q dQ@C̄nn~Q,0!1C̄mm~Q,0!

22J0~QR!C̄nm~Q,t !#, ~33!

where Qmin and Qmax are the lower and upper cutoffs, re
spectively, andJ0 denotes the zeroth-order Bessel functio

As shown in Appendix B, the matrixC̄nm(Q,t) diverges
like Q22 for small wave vectors. Consequently, fortÞ0, the
lower limit of integration in Eq.~33! cannot be extended t
zero as is usually done to obtain the static correlation fu
tion. However, to proceed, we can split the totalC̄nm(Q,t)
into two parts, namely an asymptotic part and a regular p
as follows:

C̄nm~Q,t !5C̄nm
as ~Q,t !1C̄nm

reg~Q,t !

5
1

2ḡQ2 exp@2t/t~0!~0!#1C̄nm
reg~Q,t !. ~34!

Here the relaxation timet (0)(Q) corresponds to the lowes
eigenvalue for the symmetric modesl (0)(Q), and the regu-
lar part C̄nm

reg(Q,t) is finite at Q50. Since l (0)(Q)
'2ḡQ2/(N11) asQ→0, the corresponding relaxation tim
has a finite limit forQ→0, which is given by

t~0!~0!5
N11

2ḡ
. ~35!
.

-

rt,

However, the remaining eigenvalues for both the symme
and the antisymmetric modes have nonzero limits asQ→0,
and consequently the corresponding relaxation times va
at Q50.

As shown in Appendix B, the asymptotic form fort (0)

follows from the rigorous solution of the eigenvalue and
genvector problem. However, it can also be obtained i
more straightforward manner directly from the equations
motion Eq.~19!. To show this, take the sum fromn50 to N
of both sides of this equation. Then, in the Fourier repres
tation, we find

r0

]2ū

]t2 52h3q'
2 ]ū

]t
2

gq'
2

~N11!d
~u01uN!. ~36!

Here,ū5(n50
n5Nun /(N11) is the center of mass of the film

and we have included only the leading terms inq' . In the
limit as q'→0, the slowest mode corresponds to a shift
the whole film without compression. In this case, (u0
1uN)/25ū. Now if we also neglect the acceleration ter
~i.e., take the overdamped limit! the asymptotic formula Eq
~35! follows. Note that in Eq.~36!, the internal structure of
the smectic film does not explicitly appear—in other word
this equation could also describe the motion of an ordin
liquid film. We also note that the inertial term is dominate
by damping only ifq' exceeds some limiting value. We wi
show below that this limiting value is of the same order
our experimental resolution. Thus, in the following discu
sion, we shall assume the overdamped limit.

Similarly, gnm(R,t) can also be split into asymptotic an
regular parts. Performing the straightforward integration,
obtain
pressed
gnm
as ~R,t !5

kBT

2pg H @12exp„2t/t~0!~0!…# ln
L

a0
1exp„2t/t~0!~0!…E

0

Qmax
@12J0~QR!#

dQ

Q J . ~37!

Here only the leading dependence onL has been included. The regular part is given by

gnm
reg~R,t !5

kBT

2pAKB
E

0

Qmax
Q dQ@C̄nn

reg~Q,0!1C̄mm
reg ~Q,0!22J0~QR!C̄nm

reg~Q,t !#, ~38!

where we have extended the lower limit of integration to zero. The density-density correlation function can now be ex
as a product of the regular and asymptotic parts, which are given by

Greg~R,qz ,t !5rs
2 (

n,m50

N

exp@ i ~n2m!dqz#exp@2 1
2 qz

2gnm
reg~R,t !# ~39!

and

Gas~R,qz ,t !5S a0

L D y~ t !

expH 2x~ t !E
0

Qmax
@12J0~QR!#

dQ

Q J , ~40!

respectively. Here,x(t)5(kBTqz
2/4pg)exp„2t/t (0)(0)…, andy(t)5x(0)2x(t). For r'.a0 , Eq. ~40! can be written in an

alternative form as

Gas~R,qz ,t !5S a0

L D y~ t !S ā0

R D x~ t !

expH 2x~ t !F E
0

2p

@12J0~s!#
ds

s
2E

2p

2pR/ā0
J0~s!

ds

s G J , ~41!
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from which the algebraic decay forā0!R!L̄ follows. Here,
ā05a0 /Ald and L̄5L/Ald.

The integral of the structure factor overq' corresponds to
G(R50,qz ,t), and thus we find that the scaling form o
G(R50,qz ,t) is given by

G~R50,qz ,t !5S a0

L D y~ t !

Greg~R50,qz ,t !. ~42!

This means that the leading dependence onL is contained in
the scaling factor, and that the evolution of this scaling fac
is governed byt (0)(0).

In Figs. 1–3, we show the calculated relaxation times
functions of Q, for smectic films withN55, 10, and 50
smectic layers. We display the relaxation times separately
the symmetric and the antisymmetric modes. For comp
son, we also display the relaxation times calculated for p
odic boundary conditions along thez axis, which are given
by

t~k!~Q!5
Q2

222 cos@2pk/~N11!#1Q4 . ~43!

FIG. 1. The relaxation times of the symmetric~a! and the anti-
symmetric~b! modes versusQ for a smectic-A film with N55. The
solid and the dashed lines correspond to free and periodic boun
conditions, respectively. In all casesḡ56 and K̄s51 have been
assumed.
r

s

or
i-
i-

Here, k50,...,N, and all the times are shown in units o
h3d/AKB, which are about 631028 sec, for the typical
thermotropic smectic-A parameters: K51026 dyn, B52.5
3107 dyn cm22, h351 g cm21 s21, and d530 Å. For the
case of free boundary conditions, and assuming thag
530 dyn cm21, we find that t (0)(0)5(N11)/12. For N
5100, this gives us the relaxation timet0'0.531026 sec.

In the case of the antisymmetric modes, the differen
between films with free and periodic boundary conditio
gradually disappears asN increases. Only the shortest rela
ation time exhibits large deviations forQ>1. This is be-
cause, in the case of the free boundary conditions, eigen
tors of the formvn

6}zn6zN2n with z real appear ifQ is
sufficiently large, whereasz5exp(if) for smaller values of
Q ~for details, see Appendix B!.

The difference between the relaxation times of the sy
metric modes, for free vs periodic boundary conditions,
much more dramatic. For periodic boundary conditions,
longest relaxation time exhibits aQ22 divergence nearQ
50, whereas, for free boundary conditions, the longest
laxation time remains finite atQ50.

ry

FIG. 2. The relaxation times of the symmetric~a! and the anti-
symmetric~b! modes versusQ for a smectic-A film with N510.
The solid and the dashed lines correspond to free and peri
boundary conditions, respectively. In all casesḡ56 and K̄s51
have been assumed.
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IV. EXPERIMENTAL RESULTS

We have used soft-x-ray photon correlation spectrosc
to study the behavior of the thermally drivenq'→0 modes
in the smectic-A phase of freely suspended liquid cryst
films of two different materials: butoxybenzylidene octa
niline 4O.8 and heptyloxybenzylidene heptylaniline 7O
We measured the relaxation time of the fluctuations ver
the film thickness for both 4O.8 and 7O.7.

The measurements were made using Beamline 7 at
Advanced Light Source Facility located at Lawrence Ber
ley National Laboratory. The partially coherent soft-x-r
source on this beamline was a 5 cmperiod undulator oper-
ated to provide soft x rays withl544 Å. The undulator was
followed by a soft-x-ray monochromator that had an ene
resolution of about 1 part in 104. This increased the longitu
dinal ~temporal! coherence length from the value produc
by the undulator, which was about 102 wavelengths or 4400
Å, to the value produced by the monochromator, which w
about 104 wavelengths or 44mm. The monochromatic beam
was passed through a double pinhole filter to increase
transverse~spatial! coherence length. Essentially, the fir
pinhole makes position measurements of the photons,

FIG. 3. The relaxation times of the symmetric~a! and the anti-
symmetric~b! modes versusQ for a smectic-A film with N550.
The solid and the dashed lines correspond to free and peri
boundary conditions, respectively. In all casesḡ56 and K̄s51
have been assumed.
y

.
s

he
-

y

s
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nd

the second pinhole makes transverse momentum mea
ments. Consequently, together these two pinholes defined
phase space occupied by the photons. The resulting co
ence volume of our incident beam was about 40 by 40 by
mm, and the coherent intensity was typically (5 – 10)3108

photons per second.
The measurements were made by reflecting the cohe

photons using the~001! Bragg reflections from the 4O.8 an
7O.7 films. The 2u Bragg angles for both of these~001!
reflections were about 100°. To detect the single soft-x-
photons, we developed a special detector that coupled a
scintillator to a photomultiplier. We used a two-chann
logarithmic time-base digital autocorrelator to measure
intensity autocorrelation functions both for the Bragg r
flected light and for the beam transmitted through the fil
The transmitted beam intensity autocorrelation function w
used to correct for the fluctuations in the beam from
synchrotron—we simply divided the Bragg scattering au
correlation function by the transmitted beam autocorrelat
function. Using this form of soft-x-ray photon correlatio
spectroscopy, we measured the fluctuations in the Br
scattered light due to the thermally driven surface tens
modes. For each film thickness, we fit the measured fluc
tions to a simple exponential decay curve to determine
relaxation time. To determine the thickness of each film,
measured the soft-x-ray transmission through it, and then
used tabulated soft-x-ray-absorption coefficients to calcu
the thickness of each film from our measured soft-x-ray
sorption.

The results of our measurements are shown in Fig
where we have plotted the measured film thicknesses in
crometers versus the measured relaxation times in micro
onds. According to the theory developed in Sec. III, the
lationship between the film thicknessL and the relaxation
time t is given by

t5F h3

2gGL. ~44!

The straight line behavior shown in Fig. 4 clearly agrees w

ic

FIG. 4. Plot of the measured film thickness versus the meas
relaxation times for freely suspended smectic-A films of 4O.8
~circles! and 7O.7~squares!. Our experimental data are in goo
agreement with our theoretical predictions presented in Sec. III
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this predicted linear dependence betweenL andt. From the
slopes of our measured data, we find

F2g

h3
G5112611 cm/s for 4O.8 ~45!

and

F2g

h3
G5187619 cm/s for 7O.7. ~46!

The surface tensions of 4O.8 and 7O.7 have both b
measured@24#, and they have the same measured surf
tension ~within the experimental errors!, namely g521
60.2 dyn/cm. Unfortunately, the layer sliding viscosities
not appear to have been measured for these two liquid c
tals, so we cannot do the obvious direct quantitative tes
our theory. However, we can still turn the proble
around: by combining the measured value for the surf
tension with the slopes of our measured thickness ve
relaxation time plots, we find the following values for th
layer sliding viscosities:

h350.3860.04 g/~cm s! for 4O.8 ~47!

and

h350.2360.02 g/~cm s! for 7O.7. ~48!

These values of the layer sliding viscosities for 4O.8 a
7O.7 are similar to previously measured values for the la
sliding viscosities of other smectic-A liquid crystals @25#.
Since we do obtain straight lines with ‘‘somewhat reaso
able’’ values forh3 , our experimental results support o
theoretical predictions qualitatively—and ‘‘somewha
quantitatively. Of course, direct independent measurem
of h3 for 4O.8 and 7O.7 will be even more convincing.

The overdamping assumed in this comparison me
some discussion. We argued in Sec. II that this overdam
limit is self-consistent in a bulk smectic. However, strict
speaking, in a finite smectic film, the inertial term in Eq.~19!
cannot be neglected whenq' becomes sufficiently small. In
the presence of surface tension, we find thatl (0)

'2gdq'
2 /B(N11), asq'→0. So now, the new finite-size

self-consistency condition can be written as

r0Bl~0!

d2h3
2q'

4 !1, ~49!

which breaks down asq'→0. However, we can use Eq.~49!
to determine the range ofq' for which the inertial term is
dominated by the viscous damping. This is given byq'

@qc , where qc5@2r0g/h3
2d(N11)#1/25@2/(N11)#1/2

3104 cm21. Note that we have used the asympto
expression forl (0), which is justified here since the su
face tension term dominates the layer bend term as l
as q'!@2g/dK(N11)#1/25@2/(N11)#1/23107 cm21. The
length scale defined byqc is comparable to the experiment
resolution cutoffL.

In the near future, we plan to do experiments with mu
higher momentum transfer~i.e., DQ away from the Bragg
peak!, so that we can directly probe the thermally driv
n
e

s-
of

e
us

d
r

-

ts

ts
ed

g

h

layer fluctuations. Note that the dynamics of theseB andK
modes cannot be probed in any other way. Unfortunat
this will greatly reduce the strength of our signal, so we w
need to remove our monochromater and beamline; we e
mate that this will give us at least a thousandfold increase
the input beam intensity, and thereby allow us to do
experiment.

V. DISCUSSION

In this paper, we have applied the linearized hydrodyna
ics of the smectic-A phase to determine the dynam
displacement-displacement and the dynamic density-den
correlation functions both in the ideal thermodynamic lim
and in the real world, finite-size, nonzero surface tens
smectic-A film. To the best of our knowledge, this is the fir
time that these dynamic correlation functions have been
sented in either case. We have also directly measured
thermally driven surface tension modes using coherent s
x-ray photon correlation spectroscopy. The behavior that
have observed corresponds very nicely with our theoret
predictions. There are two clear items remaining on the
perimental to-do list: ~i! we should make independent me
surements ofh3 to finalize the quantitative test of the ove
damped limit of the theory, and~ii ! we should extend our
measurements so we can directly probe the thermally dri
B andK modes.

We have also applied the linearized hydrodynamical
scription of the smectic-A phase to finite-size smectic-A films
using a discrete version of the elastic Hamiltonian. We ha
shown that the longest relaxation time of these finite-s
systems remains finite even in the infinite wavelength lim
of the in-plane fluctuations. We show that the longest rel
ation time remains finite both because of the finite size of
system in the normal direction, and also because of the p
ence of the surface tension. These results have impor
consequences, because the long-distance behavior o
density-density correlation function is governed by the lon
wavelength behavior of the displacement-displacement
relation function. Originally, Caille´ showed that the equa
time density-density correlation functions decay algeb
ically with a nonuniversal exponent@1#. In contrast, we have
shown that in the case of time-dependent correlation fu
tions, the algebraic decay is governed by the time-depen
exponentx(t). This behavior clearly differs from the predic
tions for the smectic-A phase in the thermodynamic limit
where the algebraic decay of the time-dependent dens
density correlation function is governed by the same ex
nent as in the static case. This is because of the divergen
the relaxation time in the infinite wavelength limit.

We have also found an algebraic decay of the dens
density correlation function with the resolution cutoffL. The
exponent of that decayy(t) goes to zero att50, and goes to
x(0)5kBTqz

2/4pg in the limit ast→`. For typical thermo-
tropic parameters: kBT54310214 erg, g530 dyn cm21,
d530 Å, and qz52pn/d, we obtainx(0)'0.047n2. Al-
though this is a rather small number forn51, it has a value
around 0.2 for the second peak, which should be more
cessible experimentally.

Finally, it will be interesting to study the Fourier trans
form of the density-density correlation function both
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space and time, and to study the higher-order correla
functions, which should be accessible in future experime
However, because of the extraordinary amounts of comp
tional work required to perform these studies, we must de
these problems to the future.
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APPENDIX A

In this appendix, we derive the real-space, real-time tw
point density autocorrelation function in a bulk smectic, a
its spatio-temporal Fourier transform.

The electron densityre(r ,t) in a smectic is given by

re~r ,t !5C~r ,t !eiq0z1r01c.c., ~A1!

where

C~r ,t !5uC~r ,t !ueiq0u~r ,t !. ~A2!

Here, u(r ,t) is the local displacement field of the layer
uC(r ,t)u is the local amplitude of the density wave,r0 is the
background density, and c.c. stands for complex conjug
Now in the smectic phase itself—i.e., well below th
nematic-to-smectic-A phase transition—the fluctuations
the amplitudeuC(r ,t)u are negligible. In fact, this is alway
a good approximation at sufficiently smallq andv—i.e., for
qj!1 and vt!1, where j(T) and t(T) are the
temperature-dependent correlation lengths and relaxa
times, respectively. Of course, there aretwo correlation
lengths,j' andjz , in the nematic and the smectic-A phases,
due to the anisotropic structure of these two phases.

We will restrict ourselves to this ‘‘hydrodynamic limit’
whereq'j' , qzjz , andvt are all !1, and we will ignore
fluctuations inuC(r ,t)u. We then have

Ge~r ,t !5^re~r ,t !re~0,0!&

5uCu2^eiq0@u~r ,t !2u~0,0!#&eiq0z1c.c. ~A3!

We proceed by approximating the fluctuations inu as Gauss-
ian and accurately described by harmonic elastic theory
linearized hydrodynamics@26#. We will also use linearized
hydrodynamics to treat thedynamicsof the u field @27#.
Given this, the fluctuations inu(r ,t) are Gaussian for al
times—they are Gaussian att50 because the elasticity i
harmonic, and they remain Gaussian at later times bec
the dynamics is linear. Hence we can use the general re
that for any Gaussian variablex, ^exp(x)&5exp(̂ x2&/2), pro-
vided that ^x&50. Thus, we can simplify Eq.~A3! for
Ge(r ,t) to

Ge~r ,t !5uCu2 exp$2 1
2 q0

2^@u~r ,t !2u~0,0!#2&%, ~A4!
n
s.
a-
r

-
-
nt

-
d

e.

on

d

se
ult

where we have also neglected the fluctuations
^uC(r ,t)u2&, for the reasons given earlier. Hence, our pro
lem reduces to calculating

I ~r ,t ![^@u~r ,t !2u~0,0!#2&. ~A5!

By Fourier transformingin space,

u~r ,t ![E d3q

~2p!3 u~q,t !eiq•r, ~A6!

we can rewrite this as@see Eqs.~9! and ~16! of Sec. II#

I ~r ,t !52kBTE d3q

~2p!3

12exp~2t/tq!cos~q•r !

Bqz
21Kq'

4 ,

~A7!

wheretq5h3q'
2 /(Bqz

21Kq'
4 ).

Evaluating the integrals overq, we obtain

I ~r ,t !5
kBT

4pABK
F2 lnS r'

a0
D2gS 2ABK

h3

t

uzu
,

r'
2

4luzu D G ,
~A8!

with

g~x,y![Ei~2y!2 1
4 f ~x,y!, ~A9!

where

Ei~2y![2E
y

` e2u

u
du ~A10!

is the ‘‘exponential integral’’ function@28#, and where

f ~x,y![E
0

x du

A11u2
expS 2

yu

11u2D I 0S yu

11u2D .

~A11!

Here, I 0(z) is the Bessel function of imaginary argume
@28#.

Using this result forI (r ,t) in Eq. ~A4!, we obtain

Ge~r ,t !5uCu2S r'

a0
D 22h

hS 2ABKt

h3uzu
,

r'
2

4luzu D , ~A12!

where

h~x,y!5exp„hg~x,y!… ~A13!

andh5q0
2kBT/(8pABK). This intimidating expression for-

tunately simplifies in several limits.
(i) Limit one:



y
le

u
ic

ity

ctl

ea

r,

lue
:

m
se

PRE 58 2037DYNAMIC CORRELATION FUNCTIONS FOR FINITE . . .
r'!Aluzu,

Ge~r'!Aluzu,z,t !

5uCu2ehcF 8Kt

h3a0
2 1

4

a0
2 S Kz2

B
1

4K2t2

h3
2 D 1/2G2h

55 uCu2ehcS 16Kt

h3a0
2D 2h

, t@
h3uzu

ABK

uCu2ehcS 4luzu
a0

2 D 2h

, t!
h3uzu

ABK

~A14!

where c'0.577 is Euler’s constant. High-resolution x-ra
measurements can typically probe length scales up to at
3000 Å. Takingz to be of this order,h3 to be of order
1 g~cm s!21, B to be 53107 dyn cm22, and K to be 5
31027 dyn, we obtain a crossover timeh3uzu/ABK
;1026 s, or, equivalently, a crossover frequency of abo
one megahertz. The values used in this estimate are typ
values forthermotropicsmectic liquid crystals; in lyotropic
smectic liquid crystals,B can be 40 times larger.

(ii) Limit two:

r'@Aluzu and AKt/h3,

Ge~r' ,z,t !5uCu2S r'

a0
D 22h

. ~A15!

To summarize, the scaling forms of the dynamic dens
density correlation function are given by

Ge~r' ,z,t !55
uCu2S 4luzu

a0
D 2h

ehc, uzu→`

uCu2S 16Kt

h3a0
2D 2h

ehc, t→`

uCu2S r'

a0
D 22h

, r'→`.

~A16!

Note that the ratios of these various limits are known exa
onceh is known.

In principle, inelastic x-ray scattering can be used to m
sure the spatio-temporal Fourier transform ofGe(r ,t). First,
Fourier transforming in space gives

Ge~q,t !5E d3r eiq•rGe~r ,t !. ~A17!

In general, this must be evaluated numerically. Howeve
can be shown to obey the scaling law

Ge~q,t !5q'
2412hVS 2Kutuq'

2

h3
,

qz2q0

lq'
2 D , ~A18!

where the scaling function
ast

t
al

-

y

-

it

V~x,y![2
uCu2

l E
0

`

dzE
0

`

dr'r'
122h

3hS x

z
,

r'
2

4zD cos~yz!J0~r'!. ~A19!

HereJ0 is the zeroth-order Bessel function.V(x,y) must be
evaluated numerically. To do so, we need to know the va
of h, which can be obtained from the following two limits

Ge~q,t !}q'
2412h ,

Kutuq'
2

h3
!1, uqz2q0u!lq'

2

~A20!

and

Ge~q,t !}uqz2q0u221h,

ABKutuuqz2q0u
h3

!1, ~A21!

uqz2q0u@lq'
2 .

For example, fittingGe(q,t) to the power laws in these two
limits will determineh. Then, the resultingh can be used to
calculate the scaling functionV(x,y) via Eq. ~A19!. Note
that even without doing the full calculation, the scaling for
given by Eq.~A18! can still be used to collapse an immen
amount of data, and that the only fitting parameters areh,
K/h3 ~which sets the time scale!, and l ~which sets the
length scale!.

Fourier transforming in time as well gives

Ge~q,v![E
2`

`

dt e2 ivtGe~q,t !

5q'
2612hFS 2Kq'

2

h3v
,

uqz2q0u
lq'

2 D , ~A22!

where

F~x,y![
uCu2h3

AKB
E

0

`

dt cos~ tx!V~ t,y!. ~A23!

This also has simple scaling forms in a few limits,

Ge~q,v!}q'
2612h when

Kq'
2

h3v
@1 and

uqz2q0u
lq'

2 !1,

~A24!

Ge~q,v!}qz
231h

when
AKBuqz2q0u

h3v
@1 and

uqz2q0u
lq'

2 @1,

~A25!

Ge~q,v!}v231h

when
AKBuqz2q0u

h3v
!1 and

Kq'
2

h3v
!1. ~A26!
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For simplicity, Eqs.~A24!, ~A25!, and ~A26! are theq'

→`, uqz2q0u→`, andv→` limits, respectively.

APPENDIX B

In this appendix, we derive closed-form expressions
the eigenvalues and the eigenvectors of the coupled dyn
cal equations for finite-size smectic liquid crystals. To fi
the diagonal representation ofM (Q), we must solve the fol-
lowing set of equations:

2vn211bvn2vn115lvn for n51,...,N21,

av02v15lv0 , ~B1!

2vN211avN5lvN .

Note that here,l denotes an eigenvalue—which should n
be confused withAK/B.

First, we verify that the eigenvectors are either symme
or antisymmetric with respect to the transformationn°N
2n. So, we must show that

vn
6}zk

n6zk
N2n , ~B2!

wherezk is a root~real or complex! of one of the two poly-
nomials

f 6~z!5zN121kzN116~kz11!. ~B3!

Here,k5a2b5ḡQ21(K̄s21)Q421. The eigenvalue cor
responding tozk is l (k)5b2zk21/zk . Sincel (k) must be
real,zk is either real orzk5exp(ifk). It can be shown that if
uku,1, then only the rootszk5exp(ifk) are possible. How-
ever, for uku.1, some of the roots are real. From Eq.~B3!,
we see thatf 6(z)56zN12f 6(1/z), hence all the roots ap
pear in pairs of the form (zk,1/zk). In general, the roots o
f 6(z) can only be found numerically. However, it is possib
to find a contour integral representation ofM (Q), which
also leads to an explicit closed-form expression
M 21(Q).
a

t

r

a-
r
i-

t

c

r

To find the closed-form expression that we seek, we fi
introduce the projection matricesP6(zk), which are given
by

Pnm
6 ~zk!5N6~zk!~zk

n6zk
N2n!~zk

m6zk
N2m!. ~B4!

The normalization results from the conditionP6(zk)
2

5P6(zk), hence

N6~zk!5
1

2 F6~N11!zk
N1

zk
2~N11!21

zk
221 G21

. ~B5!

SinceN6(1/zk)5zk
2NN6(zk), we haveP6(1/zk)5P6(zk).

Then using Eq.~B3!, we find that

N6~zk!56
zk1k

2 f 68 ~zk!
. ~B6!

It is convenient to expressP6(zk) as

Pnm
6 ~zk!5

Fnm
6 ~zk!

f 68 ~zk!
, ~B7!

where

Fnm
6 ~z!56 1

2 ~z1k!~zn1m1z2N2n2m!

1
1

2zN F ~z1k!z2N2un2mu1
~kz11!2

z2~z1k!
zun2muG .

~B8!

Here we have used the relationzk
N1156(kzk11)/(zk

1k). Since all of the roots of the polynomialsf 6(z) are
single roots~except for some special values ofk!, we can
treat the right-hand side of Eq.~B7! as a residue of the func
tion Fnm

6 (z)/ f 6(z) at z5zk . Then we have

1

2p i R
C
Hnm~z!dz5 (

k50

N

@Pnm~zk!1Pnm~1/zk!#52dnm ,

~B9!

where
Hnm~z!5
Fnm

1 ~z!

f 1~z!
1

Fnm
2 ~z!

f 2~z!
5

1

f 1~z! f 2~z!
$2~z1k!~kz11!~zn1m1z2N2n2m!1~z1k!2z2N2un2mu11

1~kz11!2zun2mu21%. ~B10!
e

The contour of integration is chosen in such a way that
the roots of f 6(z) are insideC, whereas outsideC, z50.
Depending on whetherN is even or odd, eitherz51 or 21
are also roots off 6(z). However, it is easy to check tha
they are regular points ofHnm(z). Thus, the sum in Eq.~B9!
is over 2(N11) roots of the polynomialf 1(z) f 2(z), which
are all distinct fromz561. That is to say, the sum is ove
N11 pairs of the form (zk,1/zk), and Pnm corresponds to
eitherPnm

1 or Pnm
2 . Using this method, we can define a m

trix function F(M ) as follows:
ll
@F~M !#nm5

1

2p i R
C
F„l~z!…1

2 Hnm~z!dz, ~B11!

wherel(z)5b2z21/z, provided thatF„l(z)… is holomor-
phic insideC. If we use the theorem that the sum of all th
residues vanishes~including the residue atz5`), we can
expressF(M ) as follows:

@F~M !#nm52 1
2 (

zÞzk

res@F„l~z!…Hnm~z!#, ~B12!



PRE 58 2039DYNAMIC CORRELATION FUNCTIONS FOR FINITE . . .
where the sum is over all singular points of the functionF„l(z)…Hnm(z) other than the roots off 6(z).
Now we can easily find an explicit closed-form expression for the inverse matrixM 21(Q). We simply have

@M 21#nm52res@l21~z21!Hnm~z21!#5
z21Hnm~z21!

z212z
, ~B13!

wherel(z)5l(1/z)50, z511Q4/21Q2A11Q4/4. Because of the relationHnm(1/z)52z2Hnm(z), the residues atz5z
andz51/z are equal. After some algebra, we find that

@M 21#nm5
~12n2!~z2n2m1z22N1n1m!1~11n!2z2un2mu1~12n!2z22N1un2mu

2Q2A11Q4/4@~11n!22~12n!2z22N#
, ~B14!
e
e
u

e
th
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y
f

the
l-
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e
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s
n of
where

n5
ḡ1~K̄s21/2!Q2

A11Q4/4
.

The above expression can be compared with the similar
pression in Ref.@10# obtained for a continuous model of th
smectic-A film. In that model, the authors used a continuo
variablez, instead of a discrete layer indexn, to describe the
position of an unperturbed layer. In the limit of smallQ—
i.e., whenz'exp(Q2) andn'ḡ—both expressions have th
same functional form. However, in the discrete model,
decay ofM 21(Q) asQ→` is faster than in the continuum
et

B

s.

v.

u,

e

of

en
x-

s

e

model. For example, in our discrete model, the diago
components decay likeQ24, whereas, in contrast, in the con
tinuous model of Ref.@10# the diagonal components onl
decay likeQ22, which leads to a logarithmic divergence o
the displacement-displacement correlation function with
upper cutoffQmax. To avoid this divergence, an extra rea
space cutoff was introduced in Ref.@10#, which means that
the z coordinate of a single layer is not defined precisely.
other words, in Ref.@10#, it was assumed that the distanc
uz2z8u between two layers has some minimal value, wh
was chosen to bed/4. However, in our discrete model, thi
problem does not appear, because the equilibrium positio
every layer is well defined.
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